
1 

 

Advanced Digital Design 

Lecture 13 

Design Verification Overview 
 

1 Introduction 

In this lecture we will look in detail at the use of simulation to verify whether the 

design works as required. 
 

2 Test benches 

A test bench is a simulation model of the entire universe around a design. You place 

your design (through an instantiation statement) into a testbench. The testbench 

supplies the appropriate inputs, and the simulator displays the resulting outputs. Often 

this is regarded as a sufficient definition of a testbench.  

 

However, a proper testbench has an additional feature. Throughout the simulation, it 

should know what the correct outputs ought to be, compare the outputs from your 

design with the correct outputs, and notify you of any discrepancies. The general 

appearance of a VHDL test bench is as follows: 
 
  ENTITY testbench IS 

  END ENTITY testbench; 

 

  ARCHITECTURE tb OF testbench IS 

    Declare all the test signals that will be connect to  

    the inputs and outputs of the device we are testing 

  BEGIN 

 

    Place one copy of the design under test, and wire  

    its inputs and outputs up to test signals 

 

    Generate test waveforms that are applied to the inputs 

 

    Observe the outputs from the design and compare them with   

    the required results.  

    Report if any discrepancies are found. 

 

  END ARCHITECTURE tb; 

 

The test bench represents “the entire universe” around our design, so the test bench 

does not have any inputs or outputs, and the test signal are declared within the test 

bench as local signals. The ENTITY declaration therefore contains no port map. 

 

The style of VHDL that is used in a test bench is often quite different from what 

would be used within the design of a piece of hardware. This is because the hardware 

description will ultimately be fed to a synthesis tool, and the design must use only the 

features of the VHDL language that will synthesize well. By contrast, the test bench 

model of the outside world is never going to be synthesized, so all of the many 

complicated features of VHDL language can be used.  

 

2.1 An example to be verified 

As an example, consider the 4-bit adder circuit that we used in lecture 4.  
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LIBRARY ieee; 

USE ieee.std_logic_1164.ALL; 

 

ENTITY adder IS 

  PORT ( x, y: IN STD_LOGIC_VECTOR(3 DOWNTO 0); 

          cin:  IN STD_LOGIC; 

          sum: OUT STD_LOGIC_VECTOR(3 DOWNTO 0); 

         cout: OUT STD_LOGIC); 

END ENTITY adder; 

 
ARCHITECTURE structural OF adder IS 

  SIGNAL cry: STD_LOGIC_VECTOR(4 DOWNTO 0); 

BEGIN 

  c0:  entity work.fulladd(dataflow)  

       PORT MAP (x(0),y(0),cin,sum(0),cry(1)); 

  c1:  entity work.fulladd(dataflow)  

       PORT MAP (x(1),y(1),cry(1),sum(1),cry(2)); 

  c2:  entity work.fulladd(dataflow)  

       PORT MAP (x(2),y(2),cry(2),sum(2),cry(3)); 

  c3:  entity work.fulladd(dataflow)  

       PORT MAP (x(3),y(3),cry(3),sum(3),cout); 

END ARCHITECTURE structural; 

 

The design of the adder has already been compiled to the library element 

 
work.adder(structural) 

 

We want to find out if the design is has the correct function, i.e. whether the output 

truly is the sum of the inputs. 
 

2.2 The ASSERT statement 

The ASSERT statement provides a way to tell the VHDL tools what conditions we 

believe ought to be true if the design is functioning correctly. It has the syntax 
 
  ASSERT condition REPORT message SEVERITY severity. 

 

The condition shows what should be happening. If the condition is false, then a 

message is printed, and an error is generated of the stated severity. The severity can 

be NOTE, WARNING, ERROR, or FAILURE. An error of severity ERROR or 

FAILURE will cause termination of the simulation. NOTE and WARNING are simply 

reported on the output console and simulation continues 
 

2.3 A test bench for the 4-bit adder 

Now we will develop a test bench for the 4-bit adder that was designed in earlier 

lectures. The general idea is illustrated in the diagram below.  
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Two 4-bit inputs will be generated called TestIn1 and TestIn2. These will apply every 

possible combination of 4-bit numbers to the x and y inputs of the adder. The value of 

the sum and carry outputs of the adder will be compared to our knowledge of what the 

outputs should be if the adder is functioning correctly. Any discrepancies will be 

reported during the simulation. The code for this arrangement is as follows 

 
  LIBRARY IEEE; 

  USE IEEE.STD_LOGIC_1164.ALL; 

 

  ENTITY addtest IS 

  END ENTITY addtest; 

 

  ARCHITECTURE tb OF addtest IS 

    SIGNAL clock: std_logic:='0'; 

    --Declarations of test inputs and outputs 

    SIGNAL TestIn1: STD_LOGIC_VECTOR(3 DOWNTO 0);  

    SIGNAL TestIn2: STD_LOGIC_VECTOR(3 DOWNTO 0); 

    SIGNAL AdderOut: STD_LOGIC_VECTOR(3 DOWNTO 0); 

    SIGNAL AdderCarry: STD_LOGIC; 

    SIGNAL ExpectedResult: STD_LOGIC_VECTOR(4 DOWNTO 0);   

  BEGIN 

  

  clock <= NOT clock AFTER 10 NS; 

 

  -- Place one instance of test generation unit 

  TG:  ENTITY work.test_generator(tb)  

       PORT MAP ( clock=>clock, TestIn1=>TestIn1, TestIn2=>TestIn2, 

                  ExpectedResult=>ExpectedResult);  

  

  -- Place one instance of the Unit Under Test 

  UUT:  ENTITY work.adder(structural)  

        PORT MAP ( x=>TestIn1, y=>TestIn2, cin=>'0', 

                   sum=>AdderOut, cout=>AdderCarry ); 

 

  -- Place one instance of the result analyzer 

  RA:  ENTITY work.result_analyzer(tb) 

       port map (clock=>clock, TestIn1=>TestIn1, TestIn2=>TestIn2, 

       ExpectedResult=>ExpectedResult, ActualAdd=>AdderOut, 

       ActualCarry=>AdderCarry);   

 

  END ARCHITECTURE tb; 

 

The test generator is as follows: 

 
  LIBRARY IEEE; 

  USE IEEE.STD_LOGIC_1164.ALL; 

  USE IEEE.STD_LOGIC_ARITH.ALL; 

 

  ENTITY test_generator IS 

    PORT ( clock: IN STD_LOGIC; 

         TestIn1:  OUT STD_LOGIC_VECTOR(3 DOWNTO 0); 

         TestIn2: OUT STD_LOGIC_VECTOR(3 DOWNTO 0); 

         ExpectedResult: OUT STD_LOGIC_VECTOR(4 DOWNTO 0)); 

  END ENTITY test_generator; 

 

  ARCHITECTURE tb OF test_generator IS 

  BEGIN 

    PROCESS 

    BEGIN 
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      FOR I IN 0 TO 15 LOOP 

        FOR J IN 0 TO 15 LOOP 

          -- Set the inputs to the adder 

          TestIn1 <= CONV_STD_LOGIC_VECTOR(i,4); 

          TestIn2 <= CONV_STD_LOGIC_VECTOR(j,4); 

          -- Calculate what the output of the adder should be 

          ExpectedResult <= CONV_STD_LOGIC_VECTOR(i+j,5); 

          -- Wait until adder output has settled 

          WAIT until rising_edge(clock); 

        END LOOP; 

      END LOOP; 

      WAIT; 

    END PROCESS; 

  END ARCHITECTURE tb; 

 

A nested pair of loops1 will cause two integer variables i and j to take values ranging 

from 0 to 15. These values will be converted into 4-bit STD_LOGIC_VECTORs 

using a conversion function that is found in the STD_LOGIC_ARITH package and 

these values are applied to the adders inputs through the signals TestIn1 and TestIn2. 

 

The expected output is calculated using the following line of code: 
 
     ExpectedResult <= CONV_STD_LOGIC_VECTOR(i+j,5); 

 

The values of i and j are added together and converted to a 5-bit 

STD_LOGIC_VECTOR. Bit 4 of ExpectedResult tells us what the carry output from 

the adder should be and bits 3 DOWNTO 0 tell us what the sum output should be. The 

result analyzer looks like this: 
 

  LIBRARY IEEE; 

  USE IEEE.STD_LOGIC_1164.ALL; 

  USE IEEE.STD_LOGIC_ARITH.ALL; 

 

  ENTITY result_analyzer IS 

    PORT ( clock: IN STD_LOGIC;  

         TestIn1:  IN STD_LOGIC_VECTOR(3 DOWNTO 0); 

         TestIn2: IN STD_LOGIC_VECTOR(3 DOWNTO 0); 

         ExpectedResult: IN STD_LOGIC_VECTOR(4 DOWNTO 0); 

         ActualAdd: IN STD_LOGIC_VECTOR(3 DOWNTO 0); 

         ActualCarry: IN STD_LOGIC); 

  END ENTITY result_analyzer; 

 

  ARCHITECTURE tb OF result_analyzer IS 

  BEGIN 

 

    PROCESS(clock) 

    BEGIN 

      IF rising_edge(clock) THEN 

        -- Check whether adder output matches expectation  

        ASSERT   ExpectedResult(3 DOWNTO 0) =  ActualAdd   

                 and ExpectedResult(4) = ActualCarry 

        REPORT   "Adder output is incorrect"  

        SEVERITY WARNING; 

      END IF; 

    END PROCESS; 

  END ARCHITECTURE tb; 

                                                           
1 In VHDL it is not necessary to declare the type of a loop index (i and j in this example). Instead, their 

type is inferred automatically from the range (0 TO 15), which dictates that they must be integers. 
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At each rising edge of the clock, the expected results will be compared with the actual 

results. If any discrepancy is found, a warning will be issued. 

 

If we run the code through the simulator, the result for the first 18 test inputs is as 

shown below. 
 

 
 

In total 256 test inputs will be applied. The simulator shows how the expected output 

compares with the adder output. During simulation if any discrepancies are found 

between the expected values and the observed values a warning message is generated. 

 

 

3 Code coverage 

When we have run the test bench simulation, we know whether or not the results were 

as expected. However, it may be that for our particular choice of inputs for the test 

bench, some parts of our VHDL code were not executed. Any bugs in these portions 

of the VHDL would not have been detected. In order to address this problem, many 

simulators provide reports on code coverage, and show which portions of the code 

were executed during the simulation and which were not.  

 

However, even identifying which lines of code were not exercised by the simulator is 

still not sufficient. Suppose we have a line such as 

 

  c <=’1’ WHEN a>b ELSE ‘0’; 

 

It could be that our set of test inputs always causes the condition a>b to be true. As a 

result, even though this line of code has been executed, we still have not checked for 

bugs that might manifest themselves only when this line of code sets c to ‘0’. A 

simulator that provides expression coverage reports would be able to inform the user 

that this line of code had only been executed with the WHEN clause evaluating to true, 

and not with the clause evaluating to false. 

 

8 Summary 

In this lecture we have looked  

 Functional verification 

 The ASSERT statement and Assertion based verification 

 Code coverage and expression coverage. 


