
1

Advanced Digital Design

Lecture 13

Design Verification Overview

1 Introduction

In this lecture we will look in detail at the use of simulation to verify whether the

design works as required.

2 Test benches

A test bench is a simulation model of the entire universe around a design. You place

your design (through an instantiation statement) into a testbench. The testbench

supplies the appropriate inputs, and the simulator displays the resulting outputs. Often

this is regarded as a sufficient definition of a testbench.

However, a proper testbench has an additional feature. Throughout the simulation, it

should know what the correct outputs ought to be, compare the outputs from your

design with the correct outputs, and notify you of any discrepancies. The general

appearance of a VHDL test bench is as follows:

 ENTITY testbench IS

 END ENTITY testbench;

 ARCHITECTURE tb OF testbench IS

 Declare all the test signals that will be connect to

 the inputs and outputs of the device we are testing

 BEGIN

 Place one copy of the design under test, and wire

 its inputs and outputs up to test signals

 Generate test waveforms that are applied to the inputs

 Observe the outputs from the design and compare them with

 the required results.

 Report if any discrepancies are found.

 END ARCHITECTURE tb;

The test bench represents “the entire universe” around our design, so the test bench

does not have any inputs or outputs, and the test signal are declared within the test

bench as local signals. The ENTITY declaration therefore contains no port map.

The style of VHDL that is used in a test bench is often quite different from what

would be used within the design of a piece of hardware. This is because the hardware

description will ultimately be fed to a synthesis tool, and the design must use only the

features of the VHDL language that will synthesize well. By contrast, the test bench

model of the outside world is never going to be synthesized, so all of the many

complicated features of VHDL language can be used.

2.1 An example to be verified

As an example, consider the 4-bit adder circuit that we used in lecture 4.

2

y

x

y

x

y

x

y

x

0

0

1

1

2

2

3

3

sum

0

1

2

+

+

+

+

sum

sum

sum

3

cin

cout

cry

cry

cry

1

2

3

LIBRARY ieee;

USE ieee.std_logic_1164.ALL;

ENTITY adder IS

 PORT (x, y: IN STD_LOGIC_VECTOR(3 DOWNTO 0);

 cin: IN STD_LOGIC;

 sum: OUT STD_LOGIC_VECTOR(3 DOWNTO 0);

 cout: OUT STD_LOGIC);

END ENTITY adder;

ARCHITECTURE structural OF adder IS

 SIGNAL cry: STD_LOGIC_VECTOR(4 DOWNTO 0);

BEGIN

 c0: entity work.fulladd(dataflow)

 PORT MAP (x(0),y(0),cin,sum(0),cry(1));

 c1: entity work.fulladd(dataflow)

 PORT MAP (x(1),y(1),cry(1),sum(1),cry(2));

 c2: entity work.fulladd(dataflow)

 PORT MAP (x(2),y(2),cry(2),sum(2),cry(3));

 c3: entity work.fulladd(dataflow)

 PORT MAP (x(3),y(3),cry(3),sum(3),cout);

END ARCHITECTURE structural;

The design of the adder has already been compiled to the library element

work.adder(structural)

We want to find out if the design is has the correct function, i.e. whether the output

truly is the sum of the inputs.

2.2 The ASSERT statement

The ASSERT statement provides a way to tell the VHDL tools what conditions we

believe ought to be true if the design is functioning correctly. It has the syntax

 ASSERT condition REPORT message SEVERITY severity.

The condition shows what should be happening. If the condition is false, then a

message is printed, and an error is generated of the stated severity. The severity can

be NOTE, WARNING, ERROR, or FAILURE. An error of severity ERROR or

FAILURE will cause termination of the simulation. NOTE and WARNING are simply

reported on the output console and simulation continues

2.3 A test bench for the 4-bit adder

Now we will develop a test bench for the 4-bit adder that was designed in earlier

lectures. The general idea is illustrated in the diagram below.

x
cin

sum

y
cout

AdderOut

TestIn2

TestIn1

0

AdderCarry

4
4

4

Analyze

Expected result

Print warning if
differences found

Generate
tests

3

Two 4-bit inputs will be generated called TestIn1 and TestIn2. These will apply every

possible combination of 4-bit numbers to the x and y inputs of the adder. The value of

the sum and carry outputs of the adder will be compared to our knowledge of what the

outputs should be if the adder is functioning correctly. Any discrepancies will be

reported during the simulation. The code for this arrangement is as follows

 LIBRARY IEEE;

 USE IEEE.STD_LOGIC_1164.ALL;

 ENTITY addtest IS

 END ENTITY addtest;

 ARCHITECTURE tb OF addtest IS

 SIGNAL clock: std_logic:='0';

 --Declarations of test inputs and outputs

 SIGNAL TestIn1: STD_LOGIC_VECTOR(3 DOWNTO 0);

 SIGNAL TestIn2: STD_LOGIC_VECTOR(3 DOWNTO 0);

 SIGNAL AdderOut: STD_LOGIC_VECTOR(3 DOWNTO 0);

 SIGNAL AdderCarry: STD_LOGIC;

 SIGNAL ExpectedResult: STD_LOGIC_VECTOR(4 DOWNTO 0);

 BEGIN

 clock <= NOT clock AFTER 10 NS;

 -- Place one instance of test generation unit

 TG: ENTITY work.test_generator(tb)

 PORT MAP (clock=>clock, TestIn1=>TestIn1, TestIn2=>TestIn2,

 ExpectedResult=>ExpectedResult);

 -- Place one instance of the Unit Under Test

 UUT: ENTITY work.adder(structural)

 PORT MAP (x=>TestIn1, y=>TestIn2, cin=>'0',

 sum=>AdderOut, cout=>AdderCarry);

 -- Place one instance of the result analyzer

 RA: ENTITY work.result_analyzer(tb)

 port map (clock=>clock, TestIn1=>TestIn1, TestIn2=>TestIn2,

 ExpectedResult=>ExpectedResult, ActualAdd=>AdderOut,

 ActualCarry=>AdderCarry);

 END ARCHITECTURE tb;

The test generator is as follows:

 LIBRARY IEEE;

 USE IEEE.STD_LOGIC_1164.ALL;

 USE IEEE.STD_LOGIC_ARITH.ALL;

 ENTITY test_generator IS

 PORT (clock: IN STD_LOGIC;

 TestIn1: OUT STD_LOGIC_VECTOR(3 DOWNTO 0);

 TestIn2: OUT STD_LOGIC_VECTOR(3 DOWNTO 0);

 ExpectedResult: OUT STD_LOGIC_VECTOR(4 DOWNTO 0));

 END ENTITY test_generator;

 ARCHITECTURE tb OF test_generator IS

 BEGIN

 PROCESS

 BEGIN

4

 FOR I IN 0 TO 15 LOOP

 FOR J IN 0 TO 15 LOOP

 -- Set the inputs to the adder

 TestIn1 <= CONV_STD_LOGIC_VECTOR(i,4);

 TestIn2 <= CONV_STD_LOGIC_VECTOR(j,4);

 -- Calculate what the output of the adder should be

 ExpectedResult <= CONV_STD_LOGIC_VECTOR(i+j,5);

 -- Wait until adder output has settled

 WAIT until rising_edge(clock);

 END LOOP;

 END LOOP;

 WAIT;

 END PROCESS;

 END ARCHITECTURE tb;

A nested pair of loops1 will cause two integer variables i and j to take values ranging

from 0 to 15. These values will be converted into 4-bit STD_LOGIC_VECTORs

using a conversion function that is found in the STD_LOGIC_ARITH package and

these values are applied to the adders inputs through the signals TestIn1 and TestIn2.

The expected output is calculated using the following line of code:

 ExpectedResult <= CONV_STD_LOGIC_VECTOR(i+j,5);

The values of i and j are added together and converted to a 5-bit

STD_LOGIC_VECTOR. Bit 4 of ExpectedResult tells us what the carry output from

the adder should be and bits 3 DOWNTO 0 tell us what the sum output should be. The

result analyzer looks like this:

 LIBRARY IEEE;

 USE IEEE.STD_LOGIC_1164.ALL;

 USE IEEE.STD_LOGIC_ARITH.ALL;

 ENTITY result_analyzer IS

 PORT (clock: IN STD_LOGIC;

 TestIn1: IN STD_LOGIC_VECTOR(3 DOWNTO 0);

 TestIn2: IN STD_LOGIC_VECTOR(3 DOWNTO 0);

 ExpectedResult: IN STD_LOGIC_VECTOR(4 DOWNTO 0);

 ActualAdd: IN STD_LOGIC_VECTOR(3 DOWNTO 0);

 ActualCarry: IN STD_LOGIC);

 END ENTITY result_analyzer;

 ARCHITECTURE tb OF result_analyzer IS

 BEGIN

 PROCESS(clock)

 BEGIN

 IF rising_edge(clock) THEN

 -- Check whether adder output matches expectation

 ASSERT ExpectedResult(3 DOWNTO 0) = ActualAdd

 and ExpectedResult(4) = ActualCarry

 REPORT "Adder output is incorrect"

 SEVERITY WARNING;

 END IF;

 END PROCESS;

 END ARCHITECTURE tb;

1 In VHDL it is not necessary to declare the type of a loop index (i and j in this example). Instead, their

type is inferred automatically from the range (0 TO 15), which dictates that they must be integers.

5

At each rising edge of the clock, the expected results will be compared with the actual

results. If any discrepancy is found, a warning will be issued.

If we run the code through the simulator, the result for the first 18 test inputs is as

shown below.

In total 256 test inputs will be applied. The simulator shows how the expected output

compares with the adder output. During simulation if any discrepancies are found

between the expected values and the observed values a warning message is generated.

3 Code coverage

When we have run the test bench simulation, we know whether or not the results were

as expected. However, it may be that for our particular choice of inputs for the test

bench, some parts of our VHDL code were not executed. Any bugs in these portions

of the VHDL would not have been detected. In order to address this problem, many

simulators provide reports on code coverage, and show which portions of the code

were executed during the simulation and which were not.

However, even identifying which lines of code were not exercised by the simulator is

still not sufficient. Suppose we have a line such as

 c <=’1’ WHEN a>b ELSE ‘0’;

It could be that our set of test inputs always causes the condition a>b to be true. As a

result, even though this line of code has been executed, we still have not checked for

bugs that might manifest themselves only when this line of code sets c to ‘0’. A

simulator that provides expression coverage reports would be able to inform the user

that this line of code had only been executed with the WHEN clause evaluating to true,

and not with the clause evaluating to false.

8 Summary

In this lecture we have looked

 Functional verification

 The ASSERT statement and Assertion based verification

 Code coverage and expression coverage.

